
Starting Out 
with mBot
A. McKillop 2018



What is the mBot? 
The mBot is a simple robot that students can use to 
learn basic programming skills. It can be 
controlled by a laptop, infrared remote, or by 
code written by students. This guide will walk you 
through the setup and use of the District Library 
Resource Centre mBot Kit.

2



What can the mBot do?

Extension activities

Setting up & first steps

Troubleshooting mBot

Using mBot in your 
classroom

What do the kits come with?

3



- 15 mBots (each mBot comes with 
IR remote control, wireless dongle 
for laptop connection, figure 8 
floor mat, and USB cable) 

- 15 laptops with charge cables 
inside a laptop cart 

- 15 sets of 4 rechargeable AA 
batteries  

- 6 battery chargers 

The kit is designed to be used by a 
maximum of 30 students, with each 
robot and laptop set being used by 
a pair of students. 

Things to note: 

- Before using the mBots with your 
class, check that the batteries are 
charged. 

- The laptops are stored inside a 
laptop cart. Check to make sure 

that each laptop is plugged in to 
its charger, and that you plug in 
the cart itself! 

- There shouldn’t be any loose 
wires on the mBot. There is a 
picture of where everything 
should be plugged in on page 7 

- The mBots are not meant to be 
disassembled! Please do not 
have your class take the robots 
apart! If this is what you would like 
them to do, please consider 
booking the Vex IQ kits from the 
DLRC instead!

Each mBot in the DLRC kit comes these items

The DLRC mBot kit contains

4



What can the mBot 
do? 
The mBot is a simple, yet powerful robot. It can be 
programmed by mBlock, a program based on 
Scratch, or using the programming language C. 
There are multiple sensors built in to the mBot that 
can be programmed, including a line following 
sensor, an ultrasonic sensor for measuring distances, 
and a light sensor. 

The default mBot performs 3 different functions: using 
the IR remotes a controller, obstacle avoiding and 
line following. 

The mBot is LEGO compatible, so students can make 
modifications to their mBot depending on the task at 
hand using standard or Technic pieces.

Whenever possible, work with 
the mBots on the floor so that 
they don’t accidentally drive 

off your table!

5



Once you’ve received the kit, it 
would be wise to make sure that 
the batteries for the robots and the 
laptops are charged up.  The next 
step would be to put batteries into 
mBot.  The battery pack is located 
underneath the “mCore” board. It is 

held in place by Velcro, and can 
be tricky to get out. (Photos on 
page 7) 

If you turn the switch on the mBot to 
the on position, it will begin to do 
whatever it was programmed to the 
last time it was used. To return it to 

it’s default state, it needs to be 
connected to a laptop. 

On the laptop, open mBlock. Next, 
plug the supplied USB cable into 
the computer and the mBot.  I 
usually lay the mBot upside down 
on the table when it is tethered to 
the computer so that it doesn’t 
accidentally drive away. 

On the laptop, under the Connect 
menu, highlight Serial Port. In this 
menu, you will be able to select the 
connection between the laptop 
and the mBot (usually named 
COM9). If there is already a COM 
(short for COMmunication) listed, 
this will NOT be the one connecting 
to the mBot. Switch the mBot power 
switch to the ON position. This will 
open a connection between the 
two devices. The computer may 
take a minute or so to recognize 
the mBot. You may also need to 
reopen the menu. Select the COM 
port. 

Each mBot is stored inside it’s own box

First Steps

6



7



The program we will be using to 
program the mBot is called mBlock. 
It is designed to use the same 
interface as Scratch, a block based 
programming language. 

Once you have opened mBlock, it 
will bring up a blank program. The 
screen is divided into 4 main 
sections.  

The “stage” is in the top left corner. 
This is where we can create 
interactive elements on the 
computer itself. These elements, 
called Sprites, can be used to 
interact with the mBot, or just be 
used on their own. 

The “sprites” section is located 
below the stage. This is where you 
can keep track of all of the Sprites 
in your program. Each Sprite can 
be controlled by its own code. They 
can move, talk, make sounds and 
change their costumes. 

The “toolbox” is the middle column 
of the screen. This area holds all of 
the programming blocks. The 
blocks are sorted into sections to 
help you find what you are looking 
for more quickly. 

The entire right hand side of the 
screen is taken up by the 
“workspace”. This area is where 
you will drag and drop the 

programming blocks. It may look 
big, but it can fill up quickly! You 
are able to zoom in and out to give 
yourself a bit more space to work. 
Each Sprite gets it’s own 
workspace, so make sure if you are 
working with more than one Sprite, 
you select the one you want to 
program in the Sprites menu! 

One of the most important things to 

The home screen of mBlock

Using mBlock

8



The Stage

The Sprites menu The Toolbox
9



Default mBot 
Functions 
There are three default mBot programs that can 
be selected by pressing the A, B, or C buttons on 
the remote control, or by pressing the onboard 
button on the mBot itself. 

The first program is manual remote control. The 
arrow buttons control its direction and the 
numbers control the speed (1 being the slowest, 9 
the fastest). 

The second is a range detector. The mBot will drive 
forwards until it detects an obstacle ahead. When 
this happens, it will stop, turn and continue moving 
in the new direction. 

The third program is line detection. Place the mBot 
on a figure 8 mat, and it will follow the black line 
continuously.

10



Once you are familiar with the 
default programs, you will probably 
want to start creating some 
programs of your own.  

You could continue using the USB 
cable to connect to the mBot, but it 
can be connected to wirelessly as 
well. To do this, turn off the mBot. 
Save your work in mBlock and 
close the program. Plug the wireless 
dongle into the laptop and unplug 
the USB cable. Turn the mBot back 
on and open mBlock. Under the 
Connect menu, select 2.4G Serial. 
Click the “Connect” option.  

With the 2.4G connection, you are 
able to modify and test programs in 
without having to reconnect the 
mBot to the laptop. This is 
especially handy if you are writing 
programs where keys on the laptop 
are used to control the mBot. 

The top bar of the mBlock window will show the type of connection used with the mBot and 
whether the program has been saved. 

Connecting Wirelessly to mBot

11



Controlling mBot with keyboard 
commands

Using mBot’s sensors to avoid 
obstacles & follow lines

Driving mBot using a virtual controller

Making mBot independent 

Creating Your Own 
Programs 

12



A good place to start out with 
programming the mBot is to control 
it using the arrow keys of a laptop.  
If you haven’t been using the 2.4G 
wireless connection yet, now would 
be a good time to try it out (so you 
don’t have to chase the mBot 
around with the laptop plugged 
into it). 

It is important to note that mBots 
(and anything else you can 
program) are not very smart.  
Everything you want it to do must 
be broken down into small steps.  
For example, if you want the mBot 
to move, it needs to be told when 
to start moving, which direction you 
want it to go, how fast you want it to 
move, and when you want it to 
stop! 

Starting with a blank mBlock 
screen,  connect your mBot. Grab 
an event “Hat” that says “When 
_______ key pressed”. A “hat” is 
what Scratch (and mBlock) call the 
blocks that have curvy tops.  These 
blocks are used to start out our 
programs. In the block, you are 
able to select which key you would 

like to press.  I generally start by 
using the Up Arrow, but you could 
use whichever key you like. 

Drag the hat into your workspace. 
The mBot will respond to you 
pressing the Up Arrow by doing 
whatever you connect to the 
bottom of the hat. 

Our program will use the arrow keys, but feel free to experiment with using other keys!

Controlling mBot 
With a Keyboard

13



In the Control section, drag out a 
“Repeat until” loop. Anything placed 
inside of this block will happen 
repeatedly until a specific condition is 
met. We want the mBot to move 
forward slowly (more on speed later) 
until the Up Arrow is released. 

You will need 4 blocks to accomplish 
this. In the Operators section, we need 
a “Not” block, in the Sensing section, 
we need a “Key _____ pressed?” 
block, and in the Robots section we 
need a “run forward at speed ___” 
block. 

Start by nesting the “Key (Up Arrow) 
Pressed” block inside of the Not 
block. Next, place these two blocks 
into the opening of the Repeat Until 
loop. Now, the mBot will repeatedly 
perform the task you give it inside the 
loop until the Up Arrow is not pressed 
anymore. 

The task we want the mBot to perform 
is to “run forward”.  To set the speed, 
you can enter a number between 
-255 and 255.  The bigger the number, 
the faster mBot will drive.  I 
recommend starting out with a speed 

of around 100 until you have made 
sure the program works successfully. 

If you were to press the Up Arrow at 
this time, the mBot will begin moving 
forward, but it does not stop when you 
release the Up key.  This is because 
we haven’t told the mBot what to do 
once we’ve release the Up key, so it 
continues to do the only thing we’ve 
told it how to do! To get it to stop 
moving forward, drag a second “run 

forward” block and connect it to the 
bottom of the “Repeat Until” block.  
Set the speed on this one to 0. Now, 
the mBot knows we want it to stop 
moving once we release the key. 

This block of code can be repeated 3 
more times; replacing Up with Left, 
Right and Back (Down).

Different types of programming blocks

This is a Hat. These are used to start a 
program.

This is a loop. These are used to repeat 
actions again and again.

This is an operator. These are used to 
compare, do math, or modify statements.

This is a sensing block. These are used to 
detect changes.

This is a robot block. These are used to 
control the mBot’s actions.

14



Creating a Virtual 
Controller 
In addition to being controlled by the keyboard, the 
mBot can be controlled using a virtual keyboard created 
in mBlock.  By using Sprites we will create a program that 
will allow us to control the mBot’s motion, it’s built in LEDs 
(Light Emitting Diodes) and it’s buzzer. 

To start, open a new mBlock window and connect your 
mBot.  You could use any Sprite you like, but I like to use 
ones that look more like buttons.  To get the hang of this, 
I will outline the steps to get a button to move the mBot 
forward, one for backwards, one to “dance”, one for the 
lights and one for the buzzer.  You will need a total of 5 
Sprites (it’s best if they all look different). 

Once you have spaced out your buttons, highlight the 
one you’d like to control the forward motion in the Sprites 
menu. From the Events section, grab the Hat called 
“when this sprite is clicked”. Next you need to tell the 
mBot what you want it to do once that Sprite is clicked. 
Using two “Run forward” blocks and a “Wait” block, we 
can tell the mBot to move forward at a set speed for 1 
second before stopping. 

Code for Dancing mBot

Sample Virtual Controller Code for the Forward Button

15



The same procedure can be applied 
to other directions as well.  To create 
a “Dance” button, you can give the 
mBot a sequence of actions, which it 
will complete in the order you list 
them. Keep in mind that “Dancing” is 
used loosely! You could select a 
piece of music and actually 
choreograph the mBot’s movements 
to the beat, but my sample is simply 
making the mBot move in a pattern to 
the left and right. 

To control the lights onboard the 
mBot, drag a “set led on board (all) 
red (0) green (0) blue(0)” block from 
the Robots section and connect it to a 
“sprite clicked” hat for your Lights 
Button. The Lights on the mBot can 
create a huge number of colours by 
mixing Red, Green and Blue.  Each 

colour can be set to a value of 0 - 
255. Adjusting these values will 
change the colour that the LED 
produces.  If you set Red to 255, and 
the other two to 0, the LED will be 
bright red.  The same will be true if you 
set the Blue to 255 or the Green to 255. 

In addition to controlling the Red, Blue 
and Green values, you are able to 
control the left and right LEDs 
independently. The sample on the 
previous page simply cycles the LEDs 
through each colour for one second 
at a time. 

To use the button to control the buzzer 
sounds, we need to tell the mBot 
which note to play, along with the 
duration of the note. To begin, select 
the Sprite you intend to use as your 
Song button.  Drag a “when this sprite 
is clicked” hat into your workspace. 
You can experiment with the different 
notes and durations, or you can try to 
recreate your favourite tune! The 
sample is a quick and dirty rendition 
of the Imperial March. 

These activities can be extended in a 
variety of ways; creating a buttons for 

all directions, creating buttons to 
perform pre-programmed actions (ie 
Figure of 8, circles, etc).  Sprites could 
also be used to create animations on 
the computer (like you would do with 
Scratch) which are able to interact 
with the mBot.  Possibilities are only 
limited by imagination!

Code for the Wake Up Song Button

Code for the Lights

16



Independent mBot 
While it is fun to control the mBot with buttons, 
remotes and keyboards, an important part of 
robotics is creating programs that make the device 
operate independently. This is called automation, 
and a robot that is programmed to do this is 
considered to be autonomous. 

To make your mBot behave autonomously, we 
need to teach it to make decisions.  It helps to 
have a specific task for the mBot to accomplish, 
along with some backup plans in case it isn’t able 
to do it’s task. 

A good way to make our mBot behave 
autonomously is it use it’s built in sensors to help it 
make decisions.  We will be using the ultrasonic, 
line following and light sensors to keep our mBots 
out of danger.

17



In order to use the mBot sensors, we 
need to know a bit about how they 
work, and the kind of information 
they can collect. 

An ultrasonic sensor uses sound 
waves bouncing off objects to 
determine the distance between 
itself and things around it. We aren’t 
able to hear the sound it uses to do 
this because the human ear can’t 
pick up that frequency. It works a 

lot like echo location used by bats. 
The sensor sends this information to 
the mBot or computer in the form of 
a number. Conveniently, the 
number is the distance from the 
sensor to the nearest object, given 
in centimetres. 

The maximum distance the sensor 
can detect is 400cm, and the 
minimum distance is 1cm. 

The line following sensor works by 
using ultraviolet light. The sensor 
sends out ultraviolet light and tries 
to detect any light that bounces 
back to it. Depending on whether 
the light is reflected back, the 
sensor will send the mBot or 
computer a 0 (for when the light 
isn’t reflected) or a 1 (for when the 
light is reflected). Ultraviolet light is 
reflected best by white, and is 
absorbed by black.  

There are two of these units built 
into our mBot sensor, one for the left 
side and one for the right side. This 
is interpreted by our program and 
can tell the mBot which way to turn 
in order to follow the line. 

The light sensor works by detecting 
the brightness of light surrounding 
the sensor. This is sent to themBot or 
computer in the form of a number 
between 0 and 1023, with 0 being 
no light at all.

A closeup of the mBot’s “face”. The eyes are the Ultrasonic sensor.

18



Using Sensors 
We will start with using the light sensor to tell the mBot 
when it is time to wake up. Our goal is to program the 
mBot to wake up, sing it’s morning song and stretch 
it’s wheels once it is bright enough. 

To begin with, we need to break down these tasks 
into terms our mBot can understand. We want our 
mBot to be asleep if it is dark out. If it is bright, we 
want out mBot to wake up, then sing it’s wake up 
song, and then stretch. 

Start by dragging an “if _____ then” loop into your 
workspace. In the blank space between if and then, 
we need to tell the mBot what conditions to look for. 
The mBot is supposed to be checking the light sensor 
value, so we need the “light sensor” block from the 
Robot section. We want the mBot to decide if it is 
bright enough to wake up, so we need to tell it what 
“bright” is. 

The light sensor gives a number between 0 and 1023. 
For this example, we will use the numbers 500 and up 
to define “bright”. To program this, we need a “>” 
block from the Operators section. To the left of the > 
symbol, put the “light sensor” block. To the right, type 
500. This whole thing can be put  between the if and 
then in our loop. 

19



Finally, we need to tell mBot what to 
do when it gets a light value over 
500. This will be placed in the loop 
part of our “if ____ then” block. 

Remember, the mBot will work 
through the commands in the order 
we list them, so it is important to 
place things in the order we want 
them to happen. Our mBot should 
wake up first, sing second and 
stretch third.  

To “wake up” our mBot, we will flash 
the lights green, then blue and 
finally red. We want to make sure 
that we can actually see each 
colour, so we are going to use a 
“wait” block to tell the mBot to 
pause in between each colour. 

Remember, we need to give mBot 
something to do if the Light Sensor 
reads a value of less than 500.  We 
can place these instructions outside 
of our “If” loop. We need to 

specifically tell it to keep it’s lights 
off, and to not be moving.  We do 
not need to tell it to make no noise 
because the “play tone” block has 
a built in time (beat length).

Top Left: Wake up Lights	  

Right: Wake up Lights, Song and Stretch 

Bottom Left: Wake up Lights and Song 

Light Sensor

20



To keep our mBot from crashing into 
obstacles, we need to program it to 
use the Ultrasonic sensor. For this 
activity, it is a good idea to clear a 
space on the floor and set up one 
or two obstacles for the mBot to 
avoid. The mBot needs to be told 
that we want it to move forward 

until it detects an obstacle. Once it 
finds an obstacle, we need to tell it 
how to avoid it. 

To begin, we will need a hat to start 
the program, a “forever” loop, an 
“if ___ then” loop, an “ultrasonic 
distance” block, a < operator, 
movement blocks and wait blocks. 

Start out by dragging your chosen 
hat and the “forever” loop into your 

workspace.  The first block we want 
inside this loop is a “run forward” 
block, because we want our mBot 
to start moving as soon as the 
program begins.  Set the speed to 
100. Next, we want to nest our “if 
___ then” loop inside the “forever” 
loop because we always want our 
mBot to avoid obstacles. 

The mBot box makes a great obstacle to practice with.

Choosing the Right Operator 

In this activity, we want the mBot stop when the 
distance between it and an obstacle gets too 

small. The = operator and the < operator would 
both work, but which one is correct? 


If the = block is used, the mBot will only react if 
that exact distance is met. If a distance of 20 

cm is set as the stopping point, and an obstacle 
appears only 10cm away, the mBot will not stop 

for it!


When the < block is used, any distance less 
than 20 cm will cause the mBot to stop. 

Remember, the mBot only knows what we tell it, 
so we need to be careful when we give it 

instructions!

Ultrasonic  
Sensor

21



The “ultrasonicsensor” block 
should be nested into the < 
operator block.  This will make 
it so the value our sensor 
returns will be compared 
against a number the we get to 
choose. (See the inset text on 
the previous page about 
choosing operators). We want 
our mBot to react once the 
Ultrasonic Sensor detects an 
obstacle that is 10 cm away, so 
we should type that in to the 
right of the < symbol. 

These two blocks can go into 
our “if ___ then” loop.  So far, 
the mBot will start out by 
driving forward at a speed of 
100 as soon as we click the 
flag icon.  The mBot will 
constantly check the value of 
the Ultrasonic sensor, and if it 
becomes less than 10 cm, it will 
do something.  Our next step is 
to tell the mBot what that 
something is! 

To begin with, we want to make the 
mBot stop moving forward once it 

has picked up an obstacle.  
Drag a “run forward” block into 
the "If ___ then” loop.  The 
direction could be set to 
anything, but the speed must 
be set to 0. 

If we ran the code as is, the bot 
would drive up to the obstacle, 
stop, then try to move forward 
again. It would immediately 
detect the obstacle again and 
stop.  It will stutter step it’s way 
up to the obstacle until it hits it! 
What we need to do is teach 
the mBot to avoid the obstacle 
somehow! 

We can do this a number of 
different ways, but what we are 
going to start with is telling the 
mBot to stop, wait 1 second 
and then turn to the left for one 
second. This should help our 
mBot find a clear path.  Be sure 
to place these command 

blocks beneath the “run forward at 
speed 0” block! Thats it!  

Blocks for Ultrasonic

Code for Ultrasonic

22



By using the line following sensor, we 
can teach our mBot to follow a path! 
The mBot is able to detect white or 
black, and this allows it to follow a 
black line! 

Before starting programming, you’ll 
need to get out the Figure of 8 paper 
inside your mBot box.  Find space on 
the floor where you won’t crash into 
anyone else’s mBot and spread out 
the paper with the ‘8’ facing up. 

For this activity, we will need to 
upload our code to the mBot via the 
USB cable.  In our previous activities, 
the mBot and computer were talking 
back and forth to one another.  Since 
our figure of 8 is quite small, the mBot 
needs to be able to react to changes 
in the line detector more quickly than 
when it talks back and forth to the 
computer. 

To achieve this, we need to use a 
special hat that is listed under the 
Robots section called “mBot 

Program”. This tells the mBot that 
it will not be communicating with 
the computer after the code is 
uploaded. 

First, we want to connect a 
“forever” loop to the hat.  This will 
make sure that the mBot will 
continuously be checking the 
value of the Line Sensor.  

The Line Sensor is actually two 
sensors; one for the left side and 
one for the right.  Either side can 
return a value indicating it is 
detecting white or black.  

We need to decide what 
behaviour we want our mBot to 
perform.  If both sensors pick up 
black, we want our mBot to drive 
forward. If the left side picks up white, 
the mBot should turn right to correct 
itself.  When the sensor picks up white 
on the right side, it should turn left. 

Uploading this code is a bit different 
than the ones in the past.  To start 
uploading your code, make sure to 
connect the mBot to the laptop with 
the supplied USB cable.

Line Following Sensor

Blocks Required for Line Following

Sample Line Following Code

23



In the Connect menu, be 
sure to select the serial 
connection (instructions for 
this on page 5). The next 
step in uploading is to click 
on the “mBot program” hat.  

This will shift your screen 
over to the left, hiding the 
“Stage” and “Sprites” menu. 
It will reveal what your code 
looks like written in the 
programming language C. 
To finish the upload, click 
the “Upload to Arduino” 
button. Be sure to hold your 
mBot so that it doesn’t take 
off before you unplug the 
USB! 

Take a moment and look at 
the code written out in C.  
Do you recognize any of the 
commands you used? 
Consider revisiting some of 
your old code and try to see 

what it looks like written in C!When uploading to the mBot directly, mBlock needs to convert our blocks into C

24



Sometimes the programs we write do 
not work the way we intended them 
to, and sometime they don’t even 
work at all!  Instead of getting 
frustrated, try checking to see if any of 
the following things are happening: 

Are the mBot batteries charged & 
plugged in? Is the mBot power switch 
in the ON position? Are all of the 
motors and sensor plugged in to the 
correct ports? (left motor should be in 
port M1, right motor in port M2, 
Ultrasonic sensor is port 3, Line 
Following sensor in port 2) 

If the mBot isn’t responding to the 
computer and you are using a USB 
Serial connection, check to make 
sure that you have selected the 
correct COM port. (see instructions on 
page 6) 

If the mBot isn’t responding and you 
are trying to use 2.4G Serial (wireless 
connection), check to make sure this 
is the option selected in the 
Connections menu.  

Make sure that the wireless dongle is 
plugged into the laptop, and that it is 
labelled with the same number as the 
robot. If it still doesn’t work, look at the 
mBot itself.  Through the plastic on top 
of the mBot, beside where the battery 
plugs you will see a small black 
board. This is the what receives the 
wireless signal. You can re-pair the 
mBot to the dongle by pressing the 
plastic on top of this board. Make sure 
the mBot is next to the plugged in 
dongle when you do this. There is a 
blue light that will flash on the mBot 
when you press the button that will 
switch to a solid blue light once it is 
paired. 

Once you’ve made sure the mBot is 
properly connected, we need to start 
looking at the code. Remember, 

robots only know what we tell them 
and do what we ask them.  A 
common mistake is forgetting to put 
commands into the correct loop.  If 
you want the mBot to do something 
continuously, make sure that it is 
inside a “forever” loop, or else it will 
only perform the task once! This can 
make it seem like the robot is not 
following your directions. 

Be sure to carefully read over the 
code you’ve created.  It can be 
helpful to write down a flowchart or list 
of what you want the mBot to do, and 
compare that to your code step by 
step. 

The internet is full of tutorials and 
videos to help you solve problems 
too.  Don’t get discouraged! We learn 
the most when things don’t work on 
the first try!

Troubleshooting

25



Extension Activities 
Once you have some of the basics down, it can be fun 
to challenge yourself to try new things.  There are 
many ways that mBot can be used to explore other 
curricular areas, with a little bit of ingenuity. 

If you explore the Operators section, you’ll find blocks 
that allow the mBot to perform various Math 
operations. The Ultrasonic sensor can be used to 
measure distances in centimetres, and the mBot can 
be programmed use this number to convert the 
distance into different units. 

Students can use mBlock to create interactive stories 
and games about whatever topic you (or they) 
choose. They can make their stories interact with the 
mBot, so it can react to story events. 

If your class isn’t quite ready for lots of programming, 
the class can use the driver control function to play 
balloon jousting by attaching a balloon and bamboo 
skewer.  A World Cup of mBot Soccer can be held. 

Consider making your mBot a part of a Rube Goldberg 
machine, or designing a specific task for your students 
to complete using their mBot! 

A class could theorize what kind of environment the 
mBot would most likely live in and create a model of 
an mBot community. The mBots could be given the 
task of finding their way through a maze using only the 
ultrasonic sensor, or using just the line following sensor.  

Learning to program the mBot is really just the tip of the 
iceberg. The only limiting factor is time; the more time 
spent using the mBot, the more rich and varied the 
learning experience will be.

26


